Proximinality and co-proximinality in metric linear spaces
نویسندگان
چکیده
منابع مشابه
Proximinality and co-proximinality in metric linear spaces
As a counterpart to best approximation, the concept of best coapproximation was introduced in normed linear spaces by C. Franchetti and M. Furi in 1972. Subsequently, this study was taken up by many researchers. In this paper, we discuss some results on the existence and uniqueness of best approximation and best coapproximation when the underlying spaces are metric linear spaces. A new kind of ...
متن کاملRemotality and proximinality in normed linear spaces
In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.
متن کاملProximinality in Geodesic Spaces
Let X be a complete CAT(0) space with the geodesic extension property and Alexandrov curvature bounded below. It is shown that if C is a closed subset of X , then the set of points of X which have a unique nearest point in C is Gδ and of the second Baire category inX. If, in addition,C is bounded, then the set of points ofX which have a unique farthest point in C is dense in X. A proximity resu...
متن کاملStrong proximinality and intersection properties of balls in Banach spaces
We investigate a variation of the transitivity problem for proximinality properties of subspaces and intersection properties of balls in Banach spaces. For instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M -ideal in X, then Z is strongly proximinal in X. Towards this, we prove that a finite co-dimensional proxi...
متن کاملStrong Proximinality and Renormings
We characterize finite-dimensional normed linear spaces as strongly proximinal subspaces in all their superspaces. A connection between upper Hausdorff semi-continuity of metric projection and finite dimensionality of subspace is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
سال: 2015
ISSN: 2083-7402,0365-1029
DOI: 10.17951/a.2015.69.1.83